United States Patent

US009465937B1

(12) (10) Patent No.: US 9,465,937 B1
Spiegel et al. @5) Date of Patent: Oct. 11, 2016
(54) METHODS AND SYSTEMS FOR SECURELY 2004/0210608 Al* 10/2004 Leeetal.ccooee 707/204
MANAGING FILE-ATTRIBUTE 2005/0097143 Al* 5/2005 Pudipeddi et al. 707/200
2005/0177687 Al* 82005 Rao ...ccccoeeeenn GOGF 12/0897
INFORMATION FOR FILES IN A FILE 711/118
SYSTEM 2006/0075041 Al* 4/2006 Antonoff ef al. 709/206
2006/0085666 Al* 4/2006 Stakutis et al. . .. 714/2
(75) Inventors: Mark Spiegel, West Hills, CA (US); 2006/0130141 Al1* 6/2006 Kramer et al. . . 726/23
David Buches, Westlake Village, CA 2006/0137010 Al* 6/2006 Kramer et al. 726/22
. ; . 2006/0161988 Al* 7/2006 Costea et al. 726/25
(US); Patrick Gardner, Northridge, 2006/0236392 Al* 10/2006 Thomas et al. 726/23
CA (US); David Kane, Los Angeles, 2007/0174911 AL* 7/2007 Kronenberg et al. 726/22
CA (US) 2008/0034429 AL* 2/2008 Schneidercc.cccccoown, 726/23
2008/0047013 Al* 2/2008 Claudatos et al. 726/24
(73) Assignee: Symantec Corporation, Mountain 2008/0052328 Al* 2/2008 Widhelm et al. 707/204
View, CA (US) 2008/0077571 AL* 3/2008 Harris et al.ccvvvcnee 707/5
’ 2008/0222153 Al* 9/2008 Naresh et al. 707/9
. 2008/0256636 Al* 10/2008 Gassoway 726/24
(*) Notice: Subject. to any dlsclalmer,. the term of this 2009/0287653 Al* 11/2000 B:;i(;\gé}i 70753
patent is extended or adjusted under 35 2009/0328221 Al* 12/2009 Blumfield et al. 726/24
U.S.C. 154(b) by 1595 days.
OTHER PUBLICATIONS
(21) Appl. No.: 12/130,616
. Article entitled “McObject’s New Embedded Database Kernel
(22) Filed: May 30, 2008 Mode to Provide Highest Level of Performance and Determinism”,
(51) Int.Cl dated Apr. 2, 2008, by McObject.*
GO6F 17/30 (2006.01) (Continued)
GO6F 21/56 (2013.01)
(52) US. CL Primary Examiner — Mahesh Dwivedi
CPC it GO6F 21/56 (2013.01) (74) Attorney, Agent, or Firm — ALG Intellectual
(58) TField of Classification Search Property, LLC
USPC ittt 707/634
See application file for complete search history. (57) ABSTRACT
. A computer-implemented method for securely managing
(56) References Cited file-attribute information for files in a file system may
U.S. PATENT DOCUMENTS comprise: 1) identifying at least one file, 2) identifying
o file-attribute information that identifies at least one file
7,100,072 B2* 8/2006 Galipeau et al. 714/6 attribute for the file, 3) identifying volatile metadata asso-
7,155,465 B2* 12/2006 Lee et al. ciated with the file that contains file-attribute information, 4)
7,370,234 B2* 52008 Stakutis et al. ..o 714/15 determining that the file has been modified, and 5) auto-
;’;‘gg’zgg g} N lggg?g S(Z)(llz Vetal o ;ggg% matically deleting the volatile metadata. Corresponding sys-
8.141.153 B1* 3/2012 Gardner et al. .. " 736/27 tems and computer-readable media are also disclosed.
2002/0049925 Al* 4/2002 Galipeau et al. 714/6
2003/0225792 Al1* 12/2003 Schiller et al. 707/104.1 17 Claims, 7 Drawing Sheets

200

Identify at least one file
222

l

| Identify file-sttribute information for the file |
204

l

\dentlfy volatile matadata associated with the file that contalns
the file-sttribute information
206

l

| Deermine that the file has been medified |
208

l

| Automatically delete the volatile metadata
210

US 9,465,937 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Article entitled “Single-File Cross Platform Database”, dated Nov.
13, 2007, by SQLite.*

Manual entitled “Symantec Endpoint Protection Getting Started
Guide” by Symantec, Copyright 2007.*

Manual entitled “Administration Guide for Symantec Endpoint
Protection and Symantec Network Access Control” by Symantec,
Copyright 2007.*

Article entitled Loading and Unloading Miniflters, by Microsoft,
Copyright 2004.*

Article entitled “File System Filter Drivers”, by Microsoft, dated
Oct. 11, 2005.*

* cited by examiner

U.S. Patent Oct. 11, 2016 Sheet 1 of 7 US 9,465,937 B1

Systern
100
Medules Databases
102 120
File-Attribute-ldentification File-Attribute-Information
Module Database
104 122

File-Modification-ldentification
Module
108

Change Journal
123

Metadata Module
108

FIG. 1A

U.S. Patent Oct. 11, 2016 Sheet 2 of 7 US 9,465,937 B1

File-Attribute-information Database
122

Volatile Metadata
124

File-Attribute Information
125

Non-Volatile Metadata

126
File File
300 304
File File
Contents Contents
302 308

FiIG. 3

U.S. Patent Oct. 11, 2016 Sheet 3 of 7 US 9,465,937 B1

200

\

=

h 4

Identify at least one file
202

Identify file-attribute information for the file
204

h 4
ldentify volatile metadata associated with the file that contains
the file-attribute information
206

A4

Determine that the file has been modified
208

A4

Automatically delete the volatile metadata
210

"=

FIG. 2

U.S. Patent

Oct. 11, 2016

Sheet 4 of 7

Application
402

A

h 4

1/O Manager
404

A

Y

Filtar Manager
406

Minifilter
408

A

Y

File System
410

410

A

A4

Device Driver
412

Boot-Time Device

Driver
44

FIG. 4

US 9,465,937 B1

U.S. Patent Oct. 11, 2016 Sheet 5 of 7 US 9,465,937 B1

500

™

=D
l

Identify a file-system change journal
502

Determine, by analyzing the file-system change journal, that at least
one file in the file system has been modified
504

Identify volatile metadata associated with the file that coniains file-
aftribute information

206

Automatically delete the volatile metadata
508

Y

D

FIG. §

US 9,465,937 B1

Sheet 6 of 7

Oct. 11, 2016

U.S. Patent

9 'Old4

Teo 2E9
EnllETg| 20inaQg
ebeioig ebesoig - —
2, L
A A | |
indu) Ae|dsig
H A
v h 4
€9 0E9 929 ZL9
anepa| 20BAU| laydepy ainjannseyu|
offeioig induj Ae|dsig LoI)esIunWIWo)
yY H H \
) 4
< A A A A >
h 4 A 4 \ 4 y
socsaul 7] 815 515 715
UCHEDIUNLUIIOD Janenucd ofl Js)jonucy) Loway Lowsiy waysAg Jossesold

X

019
wajsAg Buindwe)

US 9,465,937 B1

Sheet 7 of 7

Oct. 11, 2016

U.S. Patent

(N0ZZ <
aoiaeq obelois |
L]
.
.
(R <
aoineq abeiolg |
(NJOBZ » nea 'S
aoinaq abeicig | v
[4
[] .
° Svl
Janieg —
(1J06Z P oes
aolae(abeigis | Jualo

L 9Ol

087
alqe4 NVS

[{[7
=10

[[]93

SO

G671

Aely afeiolg |«
juebiEu|

{NJOSZ

agaaq abeioyg

(1)094L
aame(] abelo)g

A

F 3

4/ 002

2IM08)IYoIy HIoMIBN

US 9,465,937 B1

1
METHODS AND SYSTEMS FOR SECURELY
MANAGING FILE-ATTRIBUTE
INFORMATION FOR FILES IN A FILE
SYSTEM

BACKGROUND

Many computer-security software programs require the
ability to persist data associated with a given file. For
example, security software may store one or more attributes
of a file as metadata to the file. Examples of attributes that
may be stored as metadata to a file include a last-scanned
date, a last-modified date, a hash, a digital signature, or
file-ancestry information for the file.

Unfortunately, many security software solutions are
unable to determine the reliability of such metadata without
spending valuable processor time checking or recalculating
the metadata. However, without verifying the validity or
reliability of such metadata, security software may not know
whether such metadata is legitimate or valid.

SUMMARY

As will be described in greater detail below, the instant
disclosure generally relates to systems and methods for
securely managing file-attribute information for files in a file
system. For example, file-attribute information for a file may
be securely managed by: 1) creating and storing volatile
metadata that contains information that identifies at least one
attribute of the file (file-attribute information), 2) determin-
ing that the file has been modified, and 3) automatically
deleting the volatile metadata.

The exemplary methods and systems described herein
may determine that a file has been modified in a variety of
ways. In one example, the system may determine that a file
has been modified by: 1) installing a boot-time device driver
to load as early as possible in a computing-system’s boot
process, 2) registering a file-system minifilter for the boot-
time device driver at a low minifilter altitude, and 3)
identifying, using the file-system minifilter and the boot-
time device driver, modifications to the file. As file modifi-
cations are identified, the system may delete volatile meta-
data associated with the file and/or update non-volatile
metadata associated with the file. In one example, the
volatile metadata may contain information about the file that
may be useful to a security software program (such as a hash
of the file, a reliable last-modified date, a last-scanned date,
file-ancestry information, a digital signature for the file, or
the like).

In certain examples, the volatile metadata may be stored
in a file-attribute-information database, such as a kernel-
mode database. This file-attribute-information database may
represent a single database file. In addition, access to this
file-attribute-information database may be limited to appli-
cations having administrative-access rights.

Exemplary systems and methods for managing file-attri-
bute information in an environment in which a boot-time
device driver and/or a minifilter may not be loaded are also
disclosed. In this embodiment, file-attribute information for
files in a file system may be securely managed by: 1)
determining, by analyzing a file-system change journal, that
at least one file in the file system has been modified and then
2) automatically deleting volatile metadata associated with
the file that contains file-attribute information.

In this example, the file-system change journal (which
may represent a NTFS change journal or any other file-
system’s change journal) may track information regarding

20

40

45

55

2

modifications to files made from within a removable-stor-
age-device environment (such as a USB drive), a non-NTFS
operating-system environment (such as within a LINUX
environment), an operating-system safe-mode environment,
or the like.

Systems and computer-readable media corresponding to
the above-described methods are also disclosed. Features
from any of the above-mentioned embodiments may be used
in combination with one another in accordance with the
general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description
in conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings
demonstrate and explain various principles of the instant
disclosure.

FIG. 1A is a block diagram of an exemplary system for
securely managing file-attribute information for files in a file
system.

FIG. 1B is a block diagram of an exemplary file-attribute-
information database for storing file-attribute information.

FIG. 2 is a flow diagram of an exemplary computer-
implemented method for securely managing file-attribute
information for files in a file system.

FIG. 3 is a block diagram of an exemplary file in a file
system.

FIG. 4 is a block diagram of an exemplary file system
stack.

FIG. 5 is a flow diagram of an exemplary computer-
implemented method for securely managing file-attribute
information for files in a file system.

FIG. 6 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 7 is a block diagram of an exemplary computing
network capable of implementing one or more of the
embodiments described and/or illustrated herein.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily iden-
tical, elements. While the exemplary embodiments
described herein are susceptible to various modifications and
alternative forms, specific embodiments have been shown
by way of example in the drawings and will be described in
detail herein. However, the exemplary embodiments
described herein are not intended to be limited to the
particular forms disclosed. Rather, the instant disclosure
covers all modifications, equivalents, and alternatives falling
within the scope of the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

As will be described in greater detail below, the instant
disclosure generally relates to systems and methods for
securely managing file-attribute information for files in a file
system. In particular, the following will provide, with ref-
erence to FIGS. 1A, 1B, and 4, detailed descriptions of
exemplary systems for securely managing file-attribute
information for files in a file system. A description of
exemplary files in a file system will be provided in connec-
tion with FIG. 3. In addition, detailed descriptions of cor-

US 9,465,937 B1

3

responding exemplary computer-implemented methods will
also be provided in connection with FIGS. 2 and 5.

FIG. 1A is a block diagram of an exemplary system 100
for securely managing file-attribute information for files in
a file system. As illustrated in this figure, exemplary system
100 may comprise one or more modules 102 for performing
one or more tasks. For example, as will be described in
greater detail below, exemplary system 100 may comprise a
file-attribute-identification module 104 for identifying attri-
butes of a file.

Exemplary system 100 may also comprise a file-modifi-
cation-identification module 106 for determining that a file
has been modified. In addition, exemplary system 100 may
comprise a metadata module 108 for creating and managing
volatile and non-volatile metadata associated with the file.
Although illustrated as separate modules, one or more of
modules 102 in FIG. 1A may represent portions of a single
module.

As illustrated in FIG. 1, exemplary system 100 may also
comprise one or more databases 120. For example, exem-
plary system 100 may comprise a file-attribute-information
database 122 for storing file-attribute information for one or
more files. Exemplary system 100 may also comprise a
change journal 123 for providing a persistent log of changes
made to files on a volume. Although illustrated as separate
devices, one or more of databases 120 in FIG. 1A may
represent portions of a single database or a single computing
device.

FIG. 1B is a block diagram of file-attribute-information
database 122 from FIG. 1A. File-attribute-information data-
base 122 generally represents any type or form of database
capable of storing volatile metadata containing file-attribute
information for one or more files. In at least one embodi-
ment, file-attribute-information database 122 may represent
a kernel-mode database. In certain embodiments, access to
file-attribute-information database 122 in FIG. 1B may be
limited to devices or users with administrative-access rights.

As illustrated in FIG. 1B, file-attribute-information data-
base 122 may comprise volatile metadata 124 and non-
volatile metadata 126. As will be described in greater detail
below, volatile metadata 124 may contain file-attribute infor-
mation 125 for one or more files. As used herein, the phrase
“file-attribute information” generally refers to information
that identifies one or more attributes of a file. Examples of
file-attribute information include, without limitation, a digi-
tal signature for a file, a hash for a file, a last-scan date for
a file, file-ancestry information for a file, or any other
potentially useful information.

In certain embodiments, one or more of modules 102 in
FIG. 1A may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to securely manage file-attribute
information for files in a file system. For example, as will be
described in greater detail below, one or more of modules
102 may represent software modules configured to run on
one or more computing devices, such as exemplary com-
puting system 610 in FIG. 6 and/or portions of exemplary
network architecture 700 in FIG. 7. One or more of modules
102 may also represent all or portions of one or more
special-purpose computers configured to perform one or
more tasks required to securely manage file-attribute infor-
mation for files in a file system.

FIG. 2 is a flow diagram of an exemplary computer-
implemented method 200 for securely managing file-attri-
bute information for files in a file system. As illustrated in
this figure, at step 202 at least one file may be identified. For
example, exemplary system 100 in FIG. 1A may identify a

10

15

20

25

30

35

40

45

50

55

60

65

4

first file 300 and/or a second file 304 in FIG. 3. As illustrated
in FIG. 3, first file 300 and second file 304 may contain file
contents 302 and 306, respectively.

At step 204, file-attribute information for the file identi-
fied in step 202 may be identified. For example, file-
attribute-identification module 104 in FIG. 1A may identify
file-attribute information for first file 300 in FIG. 3. As
detailed above, the file-attribute information may identify at
least one file attribute for the file.

Step 204 in FIG. 2 may be performed in a variety of ways.
In certain embodiments, file-attribute-identification module
104 in FIG. 1A may identify file-attribute information 125 in
FIG. 1B stored as volatile metadata 124 in file-attribute-
information database 122. In this example, file-attribute
information 125 may identify one or more attributes of the
first file 300 in FIG. 3.

At step 206, volatile metadata associated with the file
identified in step 202 may be identified. In at least one
embodiment, this volatile metadata may contain file-attri-
bute information for the file identified in step 202. For
example, metadata module 108 in FIG. 1A may identify
volatile metadata 124 in FIG. 1B containing file-attribute
information 125 associated with first file 300 in FIG. 3.

Step 206 in FIG. 2 may be performed in a variety of ways.
For example, in certain embodiments, step 206 may com-
prise searching a file-attribute-information database for the
volatile metadata associated with the file and then accessing
the volatile metadata. For example, metadata module 108 in
FIG. 1A may search file-attribute-information database 122
in FIG. 1B for volatile metadata 124 containing file-attribute
information 125 that is associated with first file 300 in FIG.
3.

In an additional embodiment, step 206 may comprise
creating the volatile metadata associated with the file and
then storing the volatile metadata in a file-attribute-infor-
mation database. For example, upon identifying file-attri-
bute information for a file, metadata module 108 in FIG. 1A
may create volatile metadata 124 in FIG. 1B containing
file-attribute information 125 and store the same within
file-attribute-information database 122.

In certain embodiments, volatile metadata 124 in FIG. 1B
may be stored as a single file within file-attribute-informa-
tion database 122. Similarly, in at least one embodiment,
file-attribute-information database 122 may represent a
single database file.

At step 208, the system may determine whether the file
identified in step 202 has been modified. Step 208 may be
performed in a variety of ways. In one example, the system
may determine whether a file has been modified by: 1)
installing a boot-time device driver, 2) registering a file-
system minifilter for the boot-time device driver, and 3)
identifying, using at least one of the file-system filter and the
boot-timed device driver, at least one modification to the file.
For example, file-modification-identification module 106 in
FIG. 1A may install a boot-time device driver 414 within the
device-driver level 412 in a file system stack 400 as illus-
trated in FIG. 4. In at least one embodiment, file-modifica-
tion-identification module 106 in FIG. 1A may install boot-
time device driver 414 to load as early as possible in a
system-boot process. For example, file-modification-identi-
fication module 106 may require, during installation, that
boot-time device driver 414 load earlier than all non-system-
critical drivers within a computing system.

File-modification-identification module 106 may then
register a file-system minifilter, such as minifilter 408 in
FIG. 4 for boot-time device driver 414. In at least one
embodiment, file-modification-identification module 106

US 9,465,937 B1

5

may register minifilter 408 at the lowest possible minifilter
altitude. For example, file-modification-identification mod-
ule 106 may register minifilter 408 at an altitude that is lower
than all other non-allocated altitudes.

In at least one embodiment, requiring the boot-time
device driver to load earlier than all other non-system-
critical drivers and registering the file-system minifilter at an
altitude that is lower than all other non-allocated altitudes
may enable exemplary system 100 in FIG. 1A to identify
write requests from drivers in file system stack 400 in FIG.
4. For example, a write request generated at an application
level 402 in FIG. 4 for first file 300 in FIG. 3 stored on disk
416 in FIG. 4 may be identified by minifilter 408 as it is
passed from application level 402 to /O manager 404 to
filter manager 406.

Upon determining that the file has been modified at step
208, at step 210 the volatile metadata associated with the file
may be automatically deleted. For example, metadata mod-
ule 108 in FIG. 1A may, after file-modification-identification
module 106 determines that file contents 302 of first file 300
in FIG. 3 have been modified, automatically delete volatile
metadata 124 in FIG. 1B containing file-attribute informa-
tion 125 for first file 300. Upon completion of step 208,
exemplary method 200 may terminate.

Although described and illustrated with a certain degree
of particularity, exemplary method 200 in FIG. 2 may omit
one or more of the steps described or illustrated herein
and/or include additional steps in addition to those dis-
closed. For example, although not illustrated in FIG. 2,
exemplary method 200 may also comprise identifying non-
volatile metadata associated with a file and then, after
determining that the file has been modified, updating the
non-volatile metadata based at least in part on the modifi-
cations made to the file. For example, metadata module 108
in FIG. 1A may, after file-modification-identification mod-
ule 106 determines that file contents 302 of first file 300 in
FIG. 3 have been modified, update information stored in
non-volatile metadata 126 in FIG. 1B. As with volatile
metadata 124, non-volatile metadata 126 generally repre-
sents any type or form of data relating to first file 300 in FIG.
3. For example, non-volatile metadata 126 may contain
information that identifies the size of first file 300, the
creation date of first file 300, access rights for first file 300,
or any other potentially useful information.

In an additional embodiment, exemplary system 100 in
FIG. 1A may gather operating-system-provided stream con-
texts for files and then store the same for efficient lookup to
minimize queries to file-attribute-information database 122
in FIG. 1B. For example, metadata module 108 in FIG. 1A
may wait until file-modification-identification module 106
determines that a plurality of files (such as first file 300 and
second file 304 in FIG. 3) have been modified prior to
accessing file-attribute-information database 122 in FIG.
1B. In this example, metadata module 108 in FIG. 1A may,
after file-modification-identification module 106 determines
that contents 302 and 306 of first file 300 and second file
304, respectively, have been modified, automatically delete
volatile metadata 124 associated with first file 300 and
second file 304 from file-attribute-information database 122
in FIG. 1B.

The exemplary systems and methods described and illus-
trated herein provide mechanisms for securely and effi-
ciently managing file-attribute information for files in a file
system. In certain embodiments, these exemplary systems
and methods may increase security and result in perfor-
mance gains and features. For example, by automatically
deleting volatile metadata associated with a file when the file

10

15

20

25

30

35

40

45

50

55

60

65

6

is modified, the exemplary systems and methods described
and illustrated herein may ensure the reliability of metadata
associated with files in a file system.

As detailed above, the instant disclosure also provides
systems and methods for securely managing file-attribute
information in an environment in which boot-time device
driver 414 may not load. FIG. 5 is a flow diagram of an
exemplary computer-implemented method 500 for manag-
ing file-attribute information for files in such an environ-
ment. As illustrated in this figure, at step 502 a file-system
change journal may be identified. For example, file-modi-
fication-identification module 106 in FIG. 1A may identify
change journal 123. Change journal 123 generally represents
any type or form of file-system change journal capable of
providing a persistent log of changes made to files on a
volume. For example, change journal 123 may track infor-
mation about added, deleted, and modified files for a vol-
ume. In at least one embodiment, change journal 123 in FIG.
1A may represent an NTFS change journal.

Returning to FIG. 5, at step 504 the system may deter-
mine, by analyzing the file-system change journal, that at
least one file in the file system has been modified. For
example, file-modification-identification module 106 in
FIG. 1A may determine, by analyzing change journal 123,
that first file 300 in FIG. 3 has been modified.

In certain embodiments, change journal 123 may track
information about modifications to files in a file system,
even if a boot-time device driver, such as boot-time device
driver 414, in FIG. 4, is not loaded. For example, change
journal 123 may identify changes to files in a file system in
aremovable-storage-device environment, a non-NTFS oper-
ating-system environment, an operating-system safe-mode
environment, or any other environment in which a boot-time
device driver, such as boot-time device driver 414 in FIG. 4,
may be prevented from loading.

Returning to FIG. 5, at step 506 the system may identify
volatile metadata associated with the file that contains
file-attribute information for the file. For example, metadata
module 108 in FIG. 1A may identify file-attribute informa-
tion 125 in FIG. 1B for first file 300 in FIG. 3 stored as
volatile metadata 124 in FIG. 1B within file-attribute-infor-
mation database 122 in FIG. 1B.

At step 508, the system may automatically delete the
volatile metadata. For example, metadata module 108 in
FIG. 1A may, after file-modification-identification module
106 determines that file contents 302 of first file 300 in FIG.
3 have been modified, automatically delete volatile metadata
124 in FIG. 1B for first file 300 from file-attribute-informa-
tion database 122 in FIG. 1B.

FIG. 6 is a block diagram of an exemplary computing
system 610 capable of implementing one or more of the
embodiments described and/or illustrated herein. Comput-
ing system 610 broadly represents any single or multi-
processor computing device or system capable of executing
computer-readable instructions. Examples of computing
system 610 include, without limitation, workstations, lap-
tops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system
or device. In its most basic configuration, computing system
610 may comprise at least one processor 614 and a system
memory 616.

Processor 614 generally represents any type or form of
processing unit capable of processing data or interpreting
and executing instructions. In certain embodiments, proces-
sor 614 may receive instructions from a software application
or module. These instructions may cause processor 614 to
perform the functions of one or more of the exemplary

US 9,465,937 B1

7

embodiments described and/or illustrated herein. For
example, processor 614 may perform and/or be a means for
performing, either alone or in combination with other ele-
ments, one or more of the identifying, determining, deleting,
installing, registering, requiring, creating, storing, searching,
accessing, and updating steps described herein. Processor
614 may also perform and/or be a means for performing any
other steps, methods, or processes described and/or illus-
trated herein.

System memory 616 generally represents any type or
form of volatile or non-volatile storage device or medium
capable of storing data and/or other computer-readable
instructions. Examples of system memory 616 include,
without limitation, random access memory (RAM), read
only memory (ROM), flash memory, or any other suitable
memory device. Although not required, in certain embodi-
ments computing system 610 may comprise both a volatile
memory unit (such as, for example, system memory 616)
and a non-volatile storage device (such as, for example,
primary storage device 632, as described in detail below).

In certain embodiments, exemplary computing system
610 may also comprise one or more components or elements
in addition to processor 614 and system memory 616. For
example, as illustrated in FIG. 6, computing system 610 may
comprise a memory controller 618, an Input/Output (/O)
controller 620, and a communication interface 622, each of
which may be interconnected via a communication infra-
structure 612. Communication infrastructure 612 generally
represents any type or form of infrastructure capable of
facilitating communication between one or more compo-
nents of a computing device. Examples of communication
infrastructure 612 include, without limitation, a communi-
cation bus (such as an ISA, PCI, PCle, or similar bus) and
a network.

Memory controller 618 generally represents any type or
form of device capable of handling memory or data or
controlling communication between one or more compo-
nents of computing system 610. For example, in certain
embodiments memory controller 618 may control commu-
nication between processor 614, system memory 616, and
1/O controller 620 via communication infrastructure 612. In
certain embodiments, memory controller 618 may perform
and/or be a means for performing, either alone or in com-
bination with other elements, one or more of the steps or
features described and/or illustrated herein, such as identi-
fying, determining, deleting, installing, registering, requir-
ing, creating, storing, searching, accessing, and updating.

1/O controller 620 generally represents any type or form
of module capable of coordinating and/or controlling the
input and output functions of a computing device. For
example, in certain embodiments I/O controller 620 may
control or facilitate transfer of data between one or more
elements of computing system 610, such as processor 614,
system memory 616, communication interface 622, display
adapter 626, input interface 630, and storage interface 634.
1/O controller 620 may be used, for example, to perform
and/or be a means for identifying, determining, deleting,
installing, registering, requiring, creating, storing, searching,
accessing, and updating steps described herein. /O control-
ler 620 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Communication interface 622 broadly represents any type
or form of communication device or adapter capable of
facilitating communication between exemplary computing
system 610 and one or more additional devices. For
example, in certain embodiments communication interface

10

15

20

25

30

35

40

45

50

55

60

65

8

622 may facilitate communication between computing sys-
tem 610 and a private or public network comprising addi-
tional computing systems. Examples of communication
interface 622 include, without limitation, a wired network
interface (such as a network interface card), a wireless
network interface (such as a wireless network interface
card), a modem, and any other suitable interface. In at least
one embodiment, communication interface 622 may provide
a direct connection to a remote server via a direct link to a
network, such as the Internet. Communication interface 622
may also indirectly provide such a connection through, for
example, a local area network (such as an Ethernet network
or a wireless IEEE 802.11 network), a personal area network
(such as a BLUETOOTH network or an IEEE 802.15
network), a telephone or cable network, a cellular telephone
connection, a satellite data connection, or any other suitable
connection.

In certain embodiments, communication interface 622
may also represent a host adapter configured to facilitate
communication between computing system 610 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, SCSI host adapters, USB host
adapters, IEEE 1394 host adapters, SATA and eSATA host
adapters, ATA and PATA host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 622 may also allow computing system 610 to
engage in distributed or remote computing. For example,
communication interface 622 may receive instructions from
a remote device or send instructions to a remote device for
execution. In certain embodiments, communication inter-
face 622 may perform and/or be a means for performing,
either alone or in combination with other elements, one or
more of the identifying, determining, deleting, installing,
registering, requiring, creating, storing, searching, access-
ing, and updating steps disclosed herein. Communication
interface 622 may also be used to perform and/or be a means
for performing other steps and features set forth in the
instant disclosure.

As illustrated in FIG. 6, computing system 610 may also
comprise at least one display device 624 coupled to com-
munication infrastructure 612 via a display adapter 626.
Display device 624 generally represents any type or form of
device capable of visually displaying information forwarded
by display adapter 626. Similarly, display adapter 626
generally represents any type or form of device configured
to forward graphics, text, and other data from communica-
tion infrastructure 612 (or from a frame buffer, as known in
the art) for display on display device 624.

As illustrated in FIG. 6, exemplary computing system 610
may also comprise at least one input device 628 coupled to
communication infrastructure 612 via an input interface 630.
Input device 628 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 610.
Examples of input device 628 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device. In at least one embodiment, input
device 628 may perform and/or be a means for performing,
either alone or in combination with other elements, one or
more of the identifying, determining, deleting, installing,
registering, requiring, creating, storing, searching, access-
ing, and updating steps disclosed herein. Input device 628
may also be used to perform and/or be a means for per-
forming other steps and features set forth in the instant
disclosure.

US 9,465,937 B1

9

As illustrated in FIG. 6, exemplary computing system 610
may also comprise a primary storage device 632 and a
backup storage device 633 coupled to communication infra-
structure 612 via a storage interface 634. Storage devices
632 and 633 generally represent any type or form of storage
device or medium capable of storing data and/or other
computer-readable instructions. For example, storage
devices 632 and 633 may be a magnetic disk drive (e.g., a
so-called hard drive), a floppy disk drive, a magnetic tape
drive, an optical disk drive, a flash drive, or the like. Storage
interface 634 generally represents any type or form of
interface or device for transferring data between storage
devices 632 and 633 and other components of computing
system 610.

In certain embodiments, storage devices 632 and 633 may
be configured to read from and/or write to a removable
storage unit configured to store computer software, data, or
other computer-readable information. Examples of suitable
removable storage units include, without limitation, a floppy
disk, a magnetic tape, an optical disk, a flash memory
device, or the like. Storage devices 632 and 633 may also
comprise other similar structures or devices for allowing
computer software, data, or other computer-readable instruc-
tions to be loaded into computing system 610. For example,
storage devices 632 and 633 may be configured to read and
write software, data, or other computer-readable informa-
tion. Storage devices 632 and 633 may also be a part of
computing system 610 or may be a separate device accessed
through other interface systems.

In certain embodiments, the exemplary file systems dis-
closed herein may be stored on primary storage device 632,
while the exemplary file-system backups disclosed herein
may be stored on backup storage device 633. Storage
devices 632 and 633 may also be used, for example, to
perform and/or be a means for performing, either alone or in
combination with other elements, one or more of the iden-
tifying, determining, deleting, installing, registering, requir-
ing, creating, storing, searching, accessing, and updating
steps disclosed herein. Storage devices 632 and 633 may
also be used to perform and/or be a means for performing
other steps and features set forth in the instant disclosure.

Many other devices or subsystems may be connected to
computing system 610. Conversely, all of the components
and devices illustrated in FIG. 7 need not be present to
practice the embodiments described and/or illustrated
herein. The devices and subsystems referenced above may
also be interconnected in different ways from that shown in
FIG. 6. Computing system 610 may also employ any num-
ber of software, firmware, and/or hardware configurations.
For example, one or more of the exemplary embodiments
disclosed herein may be encoded as a computer program
(also referred to as computer software, software applica-
tions, computer-readable instructions, or computer control
logic) on a computer-readable medium. The phrase “com-
puter-readable medium” generally refers to any form of
device, carrier, or medium capable of storing or carrying
computer-readable instructions. Examples of computer-
readable media include, without limitation, transmission-
type media, such as carrier waves, and physical media, such
as magnetic-storage media (e.g., hard disk drives and floppy
disks), optical-storage media (e.g., CD- or DVD-ROMs),
electronic-storage media (e.g., solid-state drives and flash
media), and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 610. All or
a portion of the computer program stored on the computer-
readable medium may then be stored in system memory 616

20

25

40

45

55

10

and/or various portions of storage devices 632 and 633.
When executed by processor 614, a computer program
loaded into computing system 610 may cause processor 614
to perform and/or be a means for performing the functions
of one or more of the exemplary embodiments described
and/or illustrated herein. Additionally or alternatively, one or
more of the exemplary embodiments described and/or illus-
trated herein may be implemented in firmware and/or hard-
ware. For example, computing system 610 may be config-
ured as an application specific integrated circuit (ASIC)
adapted to implement one or more of the exemplary embodi-
ments disclosed herein.

FIG. 7 is a block diagram of an exemplary network
architecture 700 in which client systems 710, 720, and 730
and servers 740 and 745 may be coupled to a network 750.
Client systems 710, 720, and 730 generally represent any
type or form of computing device or system, such as
exemplary computing system 610 in FIG. 6. Similarly,
servers 740 and 745 generally represent computing devices
or systems, such as application servers or database servers,
configured to provide various database services and/or to run
certain software applications. Network 750 generally repre-
sents any telecommunication or computer network; includ-
ing, for example, an intranet, a wide area network (WAN),
a local area network (LLAN), a personal area network (PAN),
or the Internet.

As illustrated in FIG. 7, one or more storage devices
760(1)-(N) may be directly attached to server 740. Similarly,
one or more storage devices 770(1)-(N) may be directly
attached to server 745. Storage devices 760(1)-(N) and
storage devices 770(1)-(N) generally represent any type or
form of storage device or medium capable of storing data
and/or other computer-readable instructions. In certain
embodiments, storage devices 760(1)-(N) and storage
devices 770(1)-(N) may represent network-attached storage
(NAS) devices configured to communicate with servers 740
and 745 using various protocols, such as NFS, SMB, or
CIFS.

Servers 740 and 745 may also be connected to a storage
area network (SAN) fabric 780. SAN fabric 780 generally
represents any type or form of computer network or archi-
tecture capable of facilitating communication between a
plurality of storage devices. SAN fabric 780 may facilitate
communication between servers 740 and 745 and a plurality
of storage devices 790(1)-(N) and/or an intelligent storage
array 795. SAN fabric 780 may also facilitate, via network
750 and servers 740 and 745, communication between client
systems 710, 720, and 730 and storage devices 790(1)-(N)
and/or intelligent storage array 795 in such a manner that
devices 790(1)-(N) and array 795 appear as locally attached
devices to client systems 710, 720, and 730. As with storage
devices 760(1)-(N) and storage devices 770(1)-(N), storage
devices 790(1)-(N) and intelligent storage array 795 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions.

In certain embodiments, and with reference to exemplary
computing system 610 of FIG. 6, a communication inter-
face, such as communication interface 622 in FIG. 6, may be
used to provide connectivity between each client system
710, 720, and 730 and network 750. Client systems 710,
720, and 730 may be able to access information on server
740 or 745 using, for example, a web browser or other client
software. Such software may allow client systems 710, 720,
and 730 to access data hosted by server 740, server 745,
storage devices 760(1)-(N), storage devices 770(1)-(N),
storage devices 790(1)-(N), or intelligent storage array 795.

US 9,465,937 B1

11

Although FIG. 7 depicts the use of a network (such as the
Internet) for exchanging data, the embodiments described
and/or illustrated herein are not limited to the Internet or any
particular network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and
executed by server 740, server 745, storage devices 760(1)-
(N), storage devices 770(1)-(N), storage devices 790(1)-(N),
intelligent storage array 795, or any combination thereof. All
or a portion of one or more of the exemplary embodiments
disclosed herein may also be encoded as a computer pro-
gram, stored in server 740, run by server 745, and distributed
to client systems 710, 720, and 730 over network 750.
Accordingly, network architecture 700 may perform and/or
be a means for performing, either alone or in combination
with other elements, one or more of the identifying, deter-
mining, deleting, installing, registering, requiring, creating,
storing, searching, accessing, and updating steps disclosed
herein. Network architecture 700 may also be used to
perform and/or be a means for performing other steps and
features set forth in the instant disclosure.

As detailed above, computing system 610 and/or one or
more of the components of network architecture 700 may
perform and/or be a means for performing either alone or in
combination with other elements, one or more of the exem-
plary methods described and/or illustrated here in. For
example, a computer-implemented method for securely
managing file-attribute information for files in a file system
may comprise identifying at least one file, identifying file-
attribute information for the file that identifies at least one
file attribute, identifying volatile metadata associated with
the file (wherein the volatile metadata may comprise the
file-attribute information), determining that the file has been
modified, and then automatically deleting the volatile meta-
data. Identifying the volatile metadata may comprise search-
ing a file-attribute-information database for the volatile
metadata and accessing the volatile metadata.

Identifying the file-attribute-information may comprise
identifying at least one of: a last-scanned date for the file, a
last-modified date for the file, a hash for the file, a digital
signature for the file, and file-ancestry information for the
file.

In certain embodiments, determining that the file has been
modified may comprise installing a boot-time device driver,
registering a file-system minifilter for the boot-time device
driver, and identifying, using at least one of the file-system
minifilter and the boot-time device driver, at least one
modification to the file. Installing the boot-time device
driver may require the boot-time device driver to load earlier
than all other non-system-critical drivers. In a further
embodiment, registering the file-system minifilter for the
boot-time device driver may comprise registering the file-
system minifilter at an altitude that is lower than all other
non-allocated altitudes.

According to certain embodiments, identifying the vola-
tile metadata may comprise creating the volatile metadata
and storing the volatile metadata in a file-attribute-informa-
tion database. Access to the file-attribute-information data-
base may be limited to applications having administrative-
access rights. In at least one embodiment, storing the volatile
metadata may comprise storing the volatile metadata as a
single file. The file-attribute-information database may be
realized in many types and forms. The file-attribute-infor-
mation database may be a kernel-mode database and may be
a single database file.

10

15

20

25

30

40

45

50

55

60

65

12

Additional embodiments may further comprise identify-
ing non-volatile metadata associated with the file being
identified and updating the non-volatile metadata after deter-
mining that the file has been modified. Identifying the
non-volatile metadata may comprise creating the non-vola-
tile metadata and storing the non-volatile metadata in a
file-attribute-information database. Updating the non-vola-
tile metadata may comprise identifying at least one modi-
fication to the file and updating the non-volatile metadata
based at least in part on the modification to the file.

In certain embodiments, determining that the file has been
modified may comprise determining that a first file and a
second file have been modified. In such an instance, auto-
matically deleting the volatile metadata may comprise, after
determining that both the first and the second file have been
modified, automatically deleting volatile metadata associ-
ated with both the first file and the second file.

In an additional example, a computer-implemented
method for securely managing file-attribute information for
files in a file system may comprise identifying a file-system
change journal, determining, by analyzing the file system
change journal, that at least one file in the file system has
been modified, identifying volatile metadata associated with
the file (wherein the volatile metadata may comprise file-
attribute information that identifies at least one file attribute
for the file), and then automatically deleting the volatile
metadata. In certain embodiments, the file-system change
journal may be an NTFS change journal. The file may have
been modified in at least one of: a removable-storage-device
environment, a non-NTFS operating-system environment,
and an operating-system safe-mode environment.

A further embodiment may comprise identitying at least
one modification, to the file, identifying non-volatile meta-
data associated with the file, and, after determining that the
file has been modified, updating the non-volatile metadata
based at least in part on the modification to the file.

In connection with these methods, a computer-readable
medium may comprise computer-executable instructions
that cause the computing device to identify at least one file,
identify file-attribute information that identifies at least one
file attribute for the file, identify volatile metadata associated
with the file (wherein the volatile metadata may comprise
the file-attribute information), determine that the file has
been modified, and automatically delete the volatile meta-
data.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flow diagrams, and
examples, each block diagram component, flow diagram
step, operation, and/or component described and/or illus-
trated herein may be implemented, individually and/or col-
lectively, using a wide range of hardware, software, or
firmware (or any combination thereof) configurations. In
addition, any disclosure of components contained within
other components should be considered exemplary in nature
since many other architectures can be implemented to
achieve the same functionality.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or dis-
cussed in a particular order, these steps do not necessarily
need to be performed in the order illustrated or discussed.
The various exemplary methods described and/or illustrated
herein may also omit one or more of the steps described or
illustrated herein or include additional steps in addition to
those disclosed.

US 9,465,937 B1

13

Furthermore, while various embodiments have been
described and/or illustrated herein in the context of fully
functional computing systems, one or more of these exem-
plary embodiments may be distributed as a program product
in a variety of forms, regardless of the particular type of
computer-readable media used to actually carry out the
distribution. The embodiments disclosed herein may also be
implemented using software modules that perform certain
tasks. These software modules may include script, batch, or
other executable files that may be stored on a computer-
readable storage medium or in a computing system. In some
embodiments, these software modules may configure a
computing system to perform one or more of the exemplary
embodiments disclosed herein.

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited
to any precise form disclosed. Many modifications and
variations are possible without departing from the spirit and
scope of the instant disclosure. The embodiments disclosed
herein should be considered in all respects illustrative and
not restrictive. Reference should be made to the appended
claims and their equivalents in determining the scope of the
instant disclosure.

Unless otherwise noted, the terms “a” or “an,” as used in
the specification and claims, are to be construed as meaning
“at least one of.” In addition, for ease of use, the words
“including” and “having,” as used in the specification and
claims, are interchangeable with and have the same meaning
as the word “comprising.”

What is claimed is:

1. A computer-implemented method for securely manag-
ing file-attribute information for files in a file system, the
method comprising:

identifying at least one file;

identifying at least one file attribute of the file that would

be useful to a security software program when analyz-
ing the file;

storing the file attribute as volatile metadata for the file

that is automatically deleted when the same file is
modified;

ensuring that the security software program can rely upon

the file attribute identified within the volatile metadata
for the file by, upon determining that the file has been
modified, automatically deleting the volatile metadata
for the file in response to the determination that the
same file has been modified;

identifying non-volatile metadata associated with the file;

after determining that the file has been modified, updating

the non-volatile metadata.

2. The method of claim 1, wherein determining that the
file has been modified comprises:

installing a boot-time device driver;

registering a file-system minifilter for the boot-time

device driver;

identifying, using at least one of the file-system minifilter

and the boot-time device driver, at least one modifica-
tion to the file.

3. The method of claim 2, wherein installing the boot-time
device driver comprises requiring the boot-time device
driver to load earlier than all other non-system-critical
drivers.

4. The method of claim 2, wherein registering the file-
system minifilter for the boot-time device driver comprises
registering the file-system minifilter at an altitude that is
lower than all other non-allocated altitudes.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

5. The method of claim 1, wherein storing the file attribute
as volatile metadata comprises:

creating the volatile metadata;

storing the volatile metadata in a file-attribute-informa-

tion database.

6. The method of claim 5, further comprising limiting
access to the file-attribute-information database to applica-
tions with administrative-access rights.

7. The method of claim 5, wherein storing the volatile
metadata comprises storing the volatile metadata as a single
file.

8. The method of claim 5, wherein the file-attribute-
information database comprises a kernel-mode database.

9. The method of claim 5, wherein the file-attribute-
information database comprises a single database file.

10. The method of claim 1, wherein updating the non-
volatile metadata comprises:

identifying at least one modification to the file;

updating the non-volatile metadata based at least in part

on the modification to the file.

11. The method of claim 1, wherein identifying the
non-volatile metadata comprises:

creating the non-volatile metadata;

storing the non-volatile metadata in a file-attribute-infor-

mation database.
12. The method of claim 1, wherein:
determining that the file has been modified comprises:
determining that a first file has been modified;
determining that a second file has been modified;

automatically deleting the volatile metadata comprises,
after determining that both the first file and the second
file have been modified, automatically deleting volatile
metadata associated with both the first file and the
second file.

13. The method of claim 1, wherein the file attribute
comprises at least one of:

a last-scanned date for the file;

a last-modified date for the file;

a hash for the file;

a digital signature for the file;

file-ancestry information for the file.

14. A computer-implemented method for securely man-
aging file-attribute information for files in a file system, the
method comprising:

identifying a file-system change journal;

determining, by analyzing the file-system change journal,

that at least one file in the file system has been
modified;

identifying volatile metadata for the file that is automati-

cally deleted when the same file is modified, wherein
the volatile metadata identifies at least one file attribute
of the file that would be useful to a security software
program when analyzing the file;

ensuring that the security software program can rely upon

the file attribute identified within the volatile metadata
for the file by automatically deleting the volatile meta-
data for the file in response to the determination that the
same file has been modified;

identifying non-volatile metadata associated with the file;

after determining that the file has been modified, updating

the non-volatile metadata.

15. The method of claim 14, wherein the file-system
change journal is an NTFS change journal.

16. The method of claim 14, wherein the file was modified
in at least one of:

a removable-storage-device environment;

a non-NTFS operating-system environment;

an operating-system safe-mode environment.

US 9,465,937 B1

15

17. A non-transitory computer-readable medium compris-
ing one or more computer-executable instructions that, when
executed by a computing device, cause the computing
device to:

identify at least one file;

identify at least one file attribute of the file that would be

useful to a security software program when analyzing
the file;
store the file attribute as volatile metadata for the file that
is automatically deleted when the same file is modified;

ensure that the security software program can rely upon
the file attribute identified within the volatile metadata
for the file by, upon determining that the file has been
modified, automatically deleting the volatile metadata
for the file in response to the determination that the
same file has been modified;

identify non-volatile metadata associated with the file;

after determining that the file has been modified, update

the non-volatile metadata.

#* #* #* #* #*

10

15

16

